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Abstract

There is a demand for better information on forest biomass in tropical regions for use in carbon 
accounting. This needs robust above-ground biomass (AGB) estimation in different forest types. 
Our study sought to improve biomass estimation by selecting the best regression models based on 
observations of the contribution of radar signals to AGB in five forest types in Vietnam. Data from 
PALSAR and PALSAR-2, which covered the forest area, were used to extract 16 polarimetric radar 
(PolSAR) parameters in 2007 and 2016. This study was designed as a comparative experiment of four 
regression models: linear, polynomial, support vector machine (SVR) and random forest. First, the 
contribution of PolSAR data to AGB estimation was evaluated using two approaches: the sample data 
from all forest types, and the five individual forest types (rich, medium, poor, restoration and bamboo 
forest). Second, we examined the improvement of AGB prediction by selecting the important variables 
and assessing the best models for different forest types. The results showed an improvement in the value 
of R-squared and RMSE using the five individual forest types compared to the combined forest types. 
In particular, using a multivariate model, RMSE values were enhanced by 9-18% for the rich forest, 
and by 80-85% for the remaining forest types in all models. SVM provided the best performance for 
medium and poor forest (RMSE of 8.27 tons ha-1 and 12.38 tons ha-1, respectively), random forest for 
bamboo (RMSE of 23.18 tons ha-1), and the polynomial regression for the restoration forest (RMSE 
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Introduction

Forest planning plays an important role in sustainable 
management for forest and land resources, and it 
provides protection for areas identified as significant 
for conservation [1]. In forest planning, it is important 
to observe and predict the change of forest land, as 
well as forest biophysical parameters. The observation 
of forest changes can be effectively obtained with the 
advantages of remote sensing techniques. For instance, 
Landsat multitemporal data was used to assess the 
land cover changes and CO2 emissions in the tropical 
forest [2], or to extract construction land information 
[3]. In addition, the integration of remote sensing and 
a geographical information system (GIS) provides 
a useful tool to develop a forest plan. A recent study 
used GIS to evaluate the relationship between natural 
resources and human activities (social, economic, and 
cultural characteristics) on the forest land in order to 
develop a successful forest plan [4]. 

Biomass is one of the most important forest 
biophysical parameters that can be successfully 
estimated by various methods using remotely sensed 
data. Knowledge about aboveground forest biomass is 
of fundamental importance in quantifying the terrestrial 
carbon cycle [5]. In a tropical forest, it accounts for  
two-thirds of all terrestrial biomass [6] but it is 
frequently affected by human activities and climate 
change, making it essential to observe these regions. 
In recent years, research has focused on biomass 
research for tropical forest areas to supplement existing 
knowledge. Numerous studies have been conducted 
to improve the formula for estimating above-ground 
biomass (AGB) from the correlation with factors 
such as tree height, stem diameter and wood specific 
gravity (WSG) [7-9]. The development of methods 
based on remote sensing technology has also enhanced 
the ability of people to estimate biomass on a global 
scale. However, this method is only demonstrated as 
highly accurate for boreal and temperate forests, with 
low accuracy in the tropics, where there is decreased 
sensitivity of backscattering because of high AGB. 

In 2005, the European Space Agency proposed the 
BIOMASS mission to apply PolInSAR technology to 
estimate biomass through forest height using P-band 
synthetic aperture radar (SAR). The European Space 
Agency’s initial studies showed that P-band was well 
suited for global biomass estimation with a larger 
range of AGB values. However, pending the launch of 
the BIOMASS satellite in 2020, SAR L-band remains 
the most effective tool [10-11]. In some instance (e.g., 
low density of forest canopy), L band has proved more 

sensitive to forest AGB than P band. It is well-known 
that the penetration of the L band is shorter than the P 
band. Therefore, the L band signal is largely dominated 
by volume scattering reflected by tree trunks, branches, 
and canopy; it is less affected by the double bounce 
and surface mechanism contributed from the ground. 
A study assessing the performance of L band and P 
band PolInSAR data in estimating boreal forest AGB 
[12] proved that L band provided the best correlation 
to the forest height, which is used for estimating AGB. 
Although PolInSAR is superior, PolSAR was chosen for 
this study because the quad-pol L band image sources 
needed to generate the full functions of PolInSAR 
products were not available in the study site.

Before 1990, Vietnam was one of the countries 
with the least degraded forest from a potential carbon 
density, with degradation ratios of 0.6-0.8 [13]. From 
1990 to 2010, recorded deforestation was 3,900 ha per 
year. According to the FAO, in Vietnam there were 
large variations in natural forest change in the period 
of 1990-2015. For example, the annual change rate in 
the primary forest was −5.9% with a peak in the period 
2000-2010 of −7.8%, but there was no change in the 
period 2010-2015 [14]. During 1993-2003, statistical data 
showed that natural forests increased in areas managed 
for protection/regeneration. However, the cover of other 
natural forests under the management of parastatal 
forestry organizations tended to decrease or remain 
static, especially more recently when the organizations 
increasingly turned to multi-purpose plantation forestry 
[15]. Such variations resulted in a reduction in the 
carbon uptake by forests. In recent years, several studies 
have examined natural forest biomass in Vietnam. 
These were carried out at national and regional scales, 
mainly based on inventory measurement, and exploited 
the correlation between AGB and stand structure 
parameters to improve the allometric equation [16-20]. 
Remote sensing is also commonly used to estimate 
biomass carbon stocks and disturbance assessment. The 
combination of NDVI in optical bandwidths with SAR 
textures and polarization can be processed by regression 
analysis in order to map tropical forest biomass [21]. 
In addition, forest disturbances and regrowth can be 
extracted through HH and HV backscattering from the 
L-band ALOS PALSAR mosaic [22].

SAR is one of the most promising remote sensors 
for mapping forest carbon [10]. In the past decade, 
the increase in SAR techniques has resulted in 
improved remote observation of vegetation such as 
classification, forestry structure, and biomass. The SAR 
techniques are known as polarimetry SAR (PolSAR), 
and polarimetric interferometric SAR (PolInSAR). 

of 10.11 tons ha-1). Further research is required to derive a more robust AGB estimation model for the 
rich forest.

  
Keywords: biomass estimation, natural forest types, random forest, support vector machine, synthetic 
aperture radar
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PolInSAR has superior performance because it 
combines the advantages of PolSAR and InSAR and it 
is an important technique for determining the height of 
reflectors [23, 24]. In recent years, a new technique – 
SAR tomography – has been proposed for forest height 
detection, which has enhanced the accuracy of biomass 
prediction, especially in tropical forest areas [11, 25].

PolSAR is a well-known technique for biomass 
estimation based on polarimetric intensities and phases. 
Combinations of polarimetric parameters such as the 
coherency matrix and decomposition products have 
resulted in a significant improvement in estimations. 
The scattering components obtained from polarimetric 
decomposition are used to estimate AGB [26-27].  
Some indices such as the biomass index, canopy 
structure, and volume scattering index (which can be 
retrieved from SAR data), are also expected to show a 
linear regression with AGB [28]. The PolSAR approach 
only performs well for AGB, which is less than  
200-300 tons ha-1 because of saturation in signal 
intensity [11, 27, 29]. However, the benefit of PolSAR 
is that it does not require a pair of images with a high 
coherence in the acquired time, geometry and other 
radar parameters. Although PolInSAR performs better 
than PolSAR in vegetation measurement, the lack of 
image sources in some instances causes difficulties 
in meeting the requirement for coherence in a pair of 
images. Therefore, the PolSAR approach is still being 
using in parallel with PolInSAR for monitoring and 
measuring vegetation.

Many studies have indicated the power of using 
PolSAR for predicting biomass. In this paper, we 
focused on investigating the behavior of SAR 
backscattering over multiple forest types using the 

PolSAR data with a case study in Thua Thien Hue 
Province, Vietnam. We proposed an approach for 
estimating natural forest AGB by observing the level 
of woody volume and the species composition. In this 
study area, the natural forest can be divided into two 
categories based on the species composition: ropical 
evergreen broad-leaved forestsropical evergreen broad-
leaved forests and bamboo forests. Tropical evergreen 
broad-leaved forests can be divided into four levels 
of woody volume, including rich, medium, poor and 
restoration forest. The aim of this study was to show 
the contribution of polarimetry to biomass estimation 
following the individual forest types, which in previous 
assessments were not recorded or were incomplete. 
The study also selected a suitable function for AGB 
estimation in different forest types based on the 
comparison of various regression models. Furthermore, 
a preliminary assessment of the effectiveness of using 
PolSAR data for bamboo biomass, which was not 
documented in previous studies, has been carried out 
and forms a foundation for further study in various 
bamboo species.

Materials and Methods 

Study Area

The study area is situated in Thua Thien Hue 
Province in central Vietnam, extending from 16°44’30” 
N to 15°59’30” S. The climate is a humid subtropical 
climate. The monsoon climate also influences  
changes in tropical humidity with an average rainfall of 
1500-2000 mm and humidity of around 80%.

Fig. 1. Location map of the study area in Landsat TM in pseudo-colors band 7,5,2 a), and the cover of SAR images and in-situ data in 
2007 and 2016 b).
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In an effort to reduce climate change and improve 
livelihoods for people living near forests, the 
Vietnamese government has implemented programs 
on emission reduction and carbon service payment. 
Thua Thien Hue is one of the important pilots of these 
programs. However, the serious shortage of information 
on forest carbon and forest emission reductions is a 
challenge and is essential to be additional.

The total area of the province is 5033 km2, 
including 2026 km2 of natural forest. The natural 
vegetation mainly consists of lowland tropical forest 
with characteristic species including the dominant 
distribution of Rhodomyrtus tomentisa, Melastoma 
candidum, and Imperata cylindrica. The natural 
forest links to the Annamite range provide high forest 
continuity and integrity. The protected forest in Thua 
Thien Hue Province includes Bach Ma National Park 
and Phong Dien Nature Reserve.

According to Circular Number 34/2009/TT-
BNNPTNT of June 10, 2009 [30] published by 
the Vietnam Ministry of Agriculture and Rural 
Development on criteria for forest identification and 
classification in Vietnam, as well as based on the 
specific conditions of the study site, we classified the 
natural forest here into five types, including:
 – Rich forests (RF), which are forests with a timber 

reserve of standing trees of between 201 and  
300 m3/ha.

 – Medium forests (MF) (or average forest), which are 
forests which have a timber reserve of standing trees 
of between 101 and 200 m3/ha.

 – Poor forests (PF), which are forests with a reserve of 
standing trees of between 10 and 100 m3/ha.

 – Restoration forest (ReF) (forests with no reserve in 
the case of our study site), which are forests having 
timber trees with an average diameter of less than 
8 cm and a timber reserve of standing trees of less 
than 10 m3/ha. 

 – Bamboo forests (BAM): in our study area, these are 
a mixture of bamboo and some woody species.
The collection and classification of samples were 

conducted by staff in the Central Sub Forest Inventory 
and Planning Institute, Thua Thien Hue Province, 
Vietnam. These data showed that poor forests often 
had timber reserves of between 50 and 100 m3/ha. All 
forests with a reserve lower than 50 m3/ha were then 
assigned as restoration forests. We called this forest 
type “restoration” instead of “no reserve forest” because 
it still contained some wood reserves.

SAR and Data Processing

A scene of the PALSAR on 12 May 2007 and one 
PALSAR-2 image on 29 May 2016 were used. They 
covered a part in a forest area of Thua Thien Hue 
Province, Vietnam. The phased array type L-band 
synthetic aperture radar (PALSAR) is an active 
microwave sensor using L-band frequency. The benefit 
compared with optical images is that it achieves cloud-

free and day-and-night land observation. PALSAR was 
launched in 2006 by a joint project between JAXA and 
the Japan Resources Observation System Organization. 
In 2014, they launched ALOS-2/PALSAR-2 which was 
based on ALOS/PALSAR, but with a higher resolution, 
wide swath width, and better image quality. The data 
comprised full-polarized images (HH, HV, VH and VV 
polarizations) in a single look complex (SLC) format. 
For the year 2007, the data has the incidence angle at 
the image center of 23.89o with a size of 3.55 × 9.3 m 
in azimuth and range, respectively. The 2016 scene 
has the incidence angle at the image center of 38.99o 
and the azimuth and range spacing was 3.12 × 4.57 m, 
respectively. 

The data were then converted into a 3 × 3 coherency 
matrix to describe the polarimetric behavior of a target. 
A refined Lee filter was used with a window size of  
7 × 7 to reduce the speckle noise. The topography 
effect was eliminated by using Range-Doppler Terrain 
Correction with a digital elevation model (DEM) 
from the Shuttle Radar Topography Mission, and all 
the product images were resampled to reach 8 m in 
pixel spacing (1 and 2 looks in azimuth and range). 
Polarization techniques were used to produce parameters 
such as span, pedestal height, radar forest degradation 
index (RFDI), canopy structure index (CSI), volume 
scattering index (VSI), and biomass index (BMI).  
The ratio among HH, HV, and VV was also calculated. 
The four-component Yamaguchi parameter was  
applied to decompose the backscattered power. The 
pixel values were derived using the mean value of  
9 pixels (3 × 3 pixels).

A coherency matrix is a representation of the 
product of a Pauli basis with its transposition of the 
complex conjugate as T = Kp x Kp

*T, where * represents 
the conjugate and denotes the Hermitian transpose [31]. 
The simple form of the coherency matrix is:

                   (2)

… where T11, T22, and T33 are SHH+SVV, SHH−SHV, 
and SHV, respectively, called by the three real diagonal 
elements; others are the three real and three imaginary 
parts of the three complex off-diagonal elements. 
These matrix elements are sensitive to the size, 
dielectric constant, and orientation of the main scatter 
in the medium [12]. SHH+SVV is related to single bounce 
scattering on a rough surface and SHH−SVV is an indicator 
of double bounce, while SHV is an indicator of volume 
scattering. 

In this study, the general Yamaguchi four 
components decomposition with unitary transformation 
model (G4U) was used [32, 33]. The Yamaguchi method 
is a target decomposition technique to decompose 
a scattering matrix into the volume, double bounce, 
surface and helix scattering. The approach included 
helical scattering as a fourth component based on  
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the coherency matrix to deal with the problem 
of reflection asymmetry. In 2013, Singh et al. 
[34] developed the generalized four-component 
decomposition by a unitary transformation of 
the coherency matrix (G4U). The decomposition 
employs an extended volume scattering model, which 
discriminates volume scattering between dipole and 
dihedral scattering structures caused by the cross-
polarized HV component.

Various intensity ratios and indices were computed 
from the coherency matrix element to predict AGB. 
The ratios of HH, HV, and VV such as co-pol HH/VV 
ratio, cross-pol HH/HV ratio, and VV/VH ratio were 
extracted based on the polarization measurement. In 
this study, some polarimetric parameters were computed 
from the coherency matrix element to predict AGB such 
as span, pedestal height, and various biophysical indices 
such as RFDI, CSI, VSI, and BMI. These indices are 
popularly applied for vegetation classification but have 
scarcely been examined in forest AGB estimation.  
The formulas to calculate these indices are shown 
below.

Span is the percentage of the total power and can 
be calculated based on the span of the coherence and 
covariance matrix, given as Span = trace ([T3]) [35].

The pedestal height of a polarization signature 
plot is the lowest Z-axis value in the polarization 
signature. It indicates polarization purity and is related 
to depolarization. Different types of scattering show 
different values of pedestal height, so it can be used 
for classifying forested and deforested areas. Forested 
areas often display a larger pedestal height value than 
deforested areas [36].

RFDI was developed by Saatchi and partner to 
assess the strength of the double-bounce term [37]:

                 (3)

CSI measures the relative importance of vertical 
versus horizontal structure in the vegetation, and is 
related to the vertical trunks or stems [38]:

                    (4)

VSI is a measure of the depolarization of the linearly 
polarized incident radar signal and is an indicator of 
canopy thickness or density [38]:

                     (5)

BMI is an indicator of the relative amount of woody 
and leafy biomass and is related to the radar wavelength 
and the size of vegetation components [38]:

                (6)

Ground Data Analysis

The forest ground data were provided by the 
Central Sub Forest Inventory and Planning Institute, 
Thua Thien Hue Province, Vietnam (Sub-FIPI). The 
data were collected over two time periods, January to 
October in 2007 and 2016. In 2007, 10 measured plots 
were covered by the PALSAR scene. The size of a plot 
is 1 km2 (1000 × 1000 m). In each plot, 40 subplots of 
25 × 20 m were set to measure forest parameters.  
In 2016, 79 plots were covered by PALSAR-2 data.  
A sample plot size had a rectangular shape of  
30 × 33 m with the longer aspect in an east-west 
direction and the shorter aspect in the north-south 
direction. Each plot included four sub-plots 5 × 5 m in 
size. Diameter at breast height (DBH, in centimeters) 
was measured for all trees with a diameter over 6 cm, 
while total tree height (H, in meters) was measured for 
five normal growth trees near the center of the plot. 
Allometric equations were used to estimate the height of 
the remaining trees in the plots. Terrain elevation varied 
from 10 m to 1400 m and the slope angle was up to 35o. 
The main ecosystem was dense tropical rainforest with 
three main levels of vertical stratification.

For the bamboo forest, the number of trees, diameter 
and the average height of bamboo in each sub-plot were 
measured. If the bamboo grew like a clump, it was 
necessary to count the number of clumps in a plot and 
the number of stems per clump.

There are numerous studies on natural forest 
biomass estimates for the pantropical region and 
studies for the central coastal region in Vietnam. The 
biomass estimation formula of Huy et al. [19] based on 
a single diameter factor shows higher accuracy than 
the common pantropical formula with three factors. 
In addition, this formula reduces the error propagation 
from the height and WSG. DBH was measured directly 
in the field, thereby reducing the deviation of the 
sample [8]. The one-factor formula of Huy also showed 
higher confidence than other local formulas observed in 
the study area, which were based on the combination 
of DBH, height, and WSG. The one-factor formula  
to estimate AGB (in tons ha-1) given by Huy et al. [19] 
is:

        (7)

For estimating the biomass of bamboo forest, we 
used the formula given by [39]:

AGB = 0.3002 (DBH)2 + 0.115(DBH) + 1.7632  (8)

The uncertainties and bias in the actual AGB 
calculation were derived from three sub-models: the 
height, WSG and AGB model. However, we only used 
the DBH variable in AGB calculation, so errors from 
height and WSG were eliminated.

These ground data were combined with parameters 
derived from the SAR image, and the estimated AGB 
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was evaluated using conventional regression and 
machine learning algorithms.

Above-Ground Biomass Estimation

For examining the correlation of SAR signals 
and in-situ data, 479 polygons of forest areas were 
extracted in the study site. The 2007 polygons were 
drawn in the size of 25 × 20 m to fit the collected 
samples. Meanwhile, the 2016 polygons with of  
30 × 33 m were derived from the GPS points data. Both 
PALSAR and PALSAR-2 product data were resampled 
to 8-m resolution. Therefore, the value of a polygon is 
approximate to the mean value of 9 pixels that were 
extracted from SAR data.

For AGB estimation, two approaches were  
observed based on the parametric and non-parametric 
methods. The former included linear and polynomial 
(2 degrees) models. These models are the common 
conventional way to first explore the correlation of 
PolSAR data to forest biomass. In addition, in order 
to improve the biomass estimation we used support 
vector regression (SVR) and random forest. These  
are well-known algorithms based on machine  
learning approaches that have been widely used in 
many fields.

SVR is related to statistical learning theory  
based on the kernel method to transform a non-
linear regression problem into a linear one in a higher 
dimension’s feature space. Given training samples  
(xi, yi), (i = 1,..., n), where xi is a multivariate input, yi is 
a scalar output, and n is the number of training samples, 
a linear model can then fit this new high-dimensional 
feature space as follows [40, 41]:

(9)

…where w is the weight vector and b is the bias term. 
φ denotes a nonlinear mapping function from the 
input space to the new feature space. Here, instead of 
determining the explicit form of φ, we used a kernel 
function as follows:

            (10)

Commonly used kernels include linear, polynomial 
and radial basis function. In this study, a radial 
basis function kernel was used because of its better 
performance. This is described as follows using a single 
parameter γ:

      (11)

Next, we need to find w and b by minimizing 
the regression error. The optimization problem is 
formulated as follows:

    (12)
 
…where parameter C determines the tradeoff between 
the tolerated training error and the model complexity. ξi 
and ξi

* are slack variables, which measure the deviation 
of each training sample point outside the ε-insensitive 
zone. These sample points are called support vectors, 
which will be used to develop regression models. 
Therefore, in this study, SVR is related to find out the 
parameter C and kernel parameter γ. The SVR model 
was analyzed using the library of e1071 in the R 
interface.

The random forest algorithm was provided by the 
randomForest package in R. In a random forest, ntree 
bootstrap samples are drawn from the original data. 
In each bootstrap sample, each node is split using the 
best among a subset of predictors randomly chosen at 
that node. New data are predicted by aggregating the 
predictions of the ntree trees [42]. Random forest for 
regression is based on two parameters, including the 
number of trees and the value of the parameter at each 
node. In this study, 16 variables were used to investigate 
the behavior of SAR backscattering in different types 
of natural forest. Therefore, it was necessary to limit 
the number and complexity of variables that were 
calculated in a model. A random forest algorithm was 
performed to select variables that improved the model 
with a high correlation coefficient and reduced the 
(RMSE) value. This operation was executed in R with 
the package randomForestExplainer [43] to help explain 
which variables were most important in models. The 
selection depended on various measures of importance 
for all variables such as the minimal depth of variables, 
p-value, node purity increase and increasing mean 
squared error (MSE).

The depth of the decision tree is the length of the 
longest path from the root (the first variable) to the 
leaf (a classification result, after several nodes). Tree 
depth represents the complexity of the model structure. 
Thus, in a random forest model with 500 trees, the 
distribution of the min_depth value for each variable 
can provide information about its presence frequency 
and the complexity of the rule that it participates in. 
The higher the min_depth, the more complex the rule. 
The variables were selected based on the importance of 
the variable with a p-value <0.05. P-value is the value 
(1 side) of binomial accreditation based on the binomial 
distribution. The H0 hypothesis of this test assumed 
that a variable joined a node only through randomness. 
When the significance threshold is set for p = 0.05, if 
the p-value of the variable is less than 0.05, it plays an 
important role in the estimation equation. The MSE 
increase provides the mean increase of the MSE after 
that variable is permuted. Node purity increase gives 
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the mean node purity increase by splits on the variable. 
Hence, these measures indirectly show the importance 
of the variable in the model.

To assess the accuracy of regression, an R-squared 
(R2) and RMSE were calculated. The ratio of R2 is 
called the coefficient of determination, and it varies 
between a range of 0 and 1. With the predicted values 
of the estimator (ŷ) and the observed values of y, the 
ratio R2, and RMSE are explained as:

                     (13)

        (14)

A k-fold cross-validation method was used to 
compare and select a model for the AGB predictive 
problem. Cross-validation is the most commonly used 
method for predictive performance evaluation of a 
model, given beforehand or when it is developed by a 
modeling procedure [44]. The value of k is the number 
of groups that will be split from a given sample data. 
The higher the value of k, the higher the accuracy in 
cross-validation [44]. In general, the selection of k is in 
the range of 5-10. In this study, 10-fold cross-validation 
was used to split data, in which the regression function 
was estimated using nine groups for training the model 
and one group for testing.

Results and Discussion

Above-Ground Biomass in the Field Data

Table 1 and Fig. 2 illustrate the forest structure 
parameters in the five forest types. Lorey’s height 
was used to calculate the average height of plots per 
forest type. The average DBH per plot is shown as a 
Dg value. Structural parameters showed a gradual 
decrease depending on the tree volume levels from the 
rich to the poor-volume stock forest. The RF had the 
highest AGB value with the variation in the range of  
200-500 tons ha-1. In BAM forest, these plot parameters 
were performed only for wood trees, but AGB was 

calculated by combining trees and bamboo. Therefore, 
although BAM had the lowest number of trees, its 
AGB was still higher than PF and ReF because a large 
amount of bamboo contributed to a significant biomass 
stock.

In this study, BAM forest represented a mixed 
species composition between trees and bamboo, mainly 
distributed on foothills at an altitude of less than  
300 m. This forest type had a two-storey structure with 
a tree storey and a bamboo storey. In the tree storey, 
tree density of D1.3≥6 cm was 33 trees/plot (1000 m2). 
Bamboo density was quite high at 116 individuals/ 
plot with species such as Dendrocalamus barbatus, 
Bambusa blumeana, and Melocalamus compartiflorus.

The diameter and stem volume are the important 
parameters strongly related to the AGB measurement. 
Therefore, the correlation coefficients among them were 
examined (Table 2). As expected, AGB had a strong 
relationship with DBH and stem volume for all forest 
types. The correlation coefficient was between 0.77 and 
0.93 for AGB and DBH, and around 0.99 for AGB and 
stem volume.

Correlation Between Polarimetric Backscattering 
and Forest Above-Ground Biomass

The correlation between the actual AGB in the 
ground data and SAR polarimetric parameters was 
investigated. In this study, we first measured the natural 
forest with the combined forests sample data. In the 
second approach, we divided the forest into five types: 
RF, MF, PF, ReF, and BAM. The interactions of AGB 
in each type with the same set of parameters were 
compared with each other and with the result of the 
first approach. This correlation was initially surveyed 
through the simple linear model.

The R2 showed significant differences between the 
two approaches: the total samples and separate forest 
types. In the former, all SAR backscatter coefficients 
had a very low correlation with AGB. However, in 
the latter, the correlation noticeably improved in some 
instances, especially in the coherency matrix elements 
(for ReF and BAM), co- and cross-pol signal.

In the total samples approach, the correlation 
between the in-situ AGB and PolSAR parameters was 

Table 1. Biophysical forest parameters in different forest types.

Type No of trees/
plot

Height (m) DBH (cm) Basal area
(m2 ha-1)

Stem Volume
(m3 ha-1)

AGB
(tons ha-1)hLorey hmin hmax Dg dmin dmax

RF 75 17.97 15.11 30.92 23.03 6 147.1 32.84 269.85 241.68

MF 53 15.43 13.08 18.86 19.53 6 109.8 20.94 148.88 139.17

PF 44 14.09 11.41 16.66 16.57 6 64.6 11.47 73.99 68.41

ReF 29 11.97 8.71 14.59 12.24 6 80.9 5.42 30.48 26.87

BAM 33 15.36 11.00 17.50 19.85 6 57.3 9.705 67.325 119.15
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very low, with R2 under 0.0187. The co- and cross-pol 
ratios did not show a high correlation, as expected. This 
result indicated that the PolSAR parameters had a low 
sensitivity to in-situ AGB for the dense natural forest 
in general. Data points showed a dispersion and did 
not have a specific relationship. The main reason was 
caused by the heterogeneous forest, which has a variety 
of forest types with complex forest structures and 
mixed tree species. These led to the strongly scattered 
correlation diagrams, which could not express the 
correlation between PolSAR data and AGB. Based on 
the result observed in, it can be seen that AGB in each 
forest type has a different correlation to PolSAR data. 
For example, the coherency matrixes T22 and T33, 
volume scattering or BMI were found to be sensitive 
to AGB for BAM, while double-bounce scattering 
and CSI were more sensitive for the ReF. Therefore, 

in this study, forests were divided into different forest 
types with high uniformity in the data structure. We 
recommend a variety of forest classifications according 
to species composition and stem volume because of the 
high correlation with forest biomass, so that forest types 
have similar characteristics in terms of structure and 
species composition.

In general, the correlation between AGB and 
PolSAR signals was improved for the forest types 
with low tree volume. Among the coherency matrix 
elements, T22 and T33 improved more than T11 for 
each forest type because of the relationship with the 
illuminated medium type such as forest trees. For 
decomposition compositions, volume scattering showed 
the best correlation as expected in forest areas. The 
ratio of co- and cross-polarization did not show a clear 
improvement, while CSI, BMI, and span indicators were 
more sensitive than other indicators to the biomass.

In summary, based on the analysis of a mono-
linear regression on each forest type, there was an 
improvement in the correlation between PolSAR and 
the biomass. Each forest type appeared to be sensitive 
to some specific indicators. In the hope of improving 
accuracy for forest AGB estimation, in the next step we 
explored the association with a multivariate combination 
based on both linear and non-linear models. Comparison 
between models was used to find the most suitable 

Fig 2. Boxplots of average above-ground biomass (AGB), diameter at breast height (DBH), and Lorey’s height (HLorey) of plots in the 
five forest types.

Table 2. Correlation coefficient (R) between in-situ above-
ground biomass (AGB), diameter at breast height (DBH) and 
stem volume in the five forest types.

Type AGBRF AGBMF AGBPF AGBReF AGBBAM

DBH 0.77 0.84 0.90 0.83 0.93

Stem 
volume 0.99 0.99 0.99 0.99 0.99
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model for each forest type. Furthermore, the use of  
16 parameters is time-consuming and has a 
computational cost. This problem will be addressed 
in the next section using the random forest model for 
appropriate variable selection.

Selection of Important Parameters

A random forest algorithm was used to assess 
the importance and correlation of parameters in the 
regression models. The parameter selection depended 
on various measures of importance for all variables such 
as the minimal depth of variables, p-value, node purity 
increase and increasing mean squared error (MSE).

For analyzing the total data sample, Yamaguchi 
volume scattering, CSI and HHVV ratio proved to be 
important. However, when separating data into five 
types of forest, each different type had a different set of 
parameters that correlated best with AGB. Polarimetric 

indices such as Y_volume, HHVV ratio, CSI and T11 
had a high frequency of presence in biomass estimation 
through their involvement in models for forest types. 

Multivariate Regression Analysis

Based on the set of selected predictor variables, 
we built a multivariate regression of polarimetric 
parameters and AGB. The regression was based on the 
parametric models, including linear and polynomial 
models, and the non-parametric models including SVR 
and random forest. A 10-fold cross-validation was used 
for testing the robustness of the model.

Fig. 3 presents the radar graph of (R2) using training 
and 10-fold cross-validation in different models. 
Models using the total sample data had a low value of 
R2 in both training and validation results of between 
0.067 and 0.29 (excluding the random forest models). 
The results improved when observing the five forest 
types separately. BAM forest showed good regression 
between its AGB and dependent variables with R2>0.47 
in all models. The R2 values were between 0.18 and 
0.90 for the MF, PF, and ReF. For the RF, unsurprisingly, 
the regression did not show any significant enhancement 
compared to the results of total samples data. This 
matched the result of previous studies, which explained 
that it is difficult to observe the relationship between 
radar backscattering and AGB after 100-150 tons ha-1 in 
tropical forest area because it leads to over- or under-
estimation [10, 29]. 

In addition, based on the low R2 value of the linear 
model compared to others, we found that AGB has a 

Table 3. Set of selected parameters in different forest types.

Forest types Set of selected variables
Total Y_volume, CSI, HHVV

Rich Y_surface, HHVV, VVVH

Medium VSI, Y_volume, T11

Poor Y_volume, T22, Span

Restoration CSI, HHVV, BMI

BAM Y_volume, T11, T33

Fig. 3. Result of regression models in the coefficient of determination (R2) using training data and 10-fold cross-validation following 
forest types.
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positive non-linear correlation with PolSAR signals. 
Random forest showed good performance in most of 
the observation. However, its robustness was lower than 
others when observing the difference between training 
and validation results. The significant difference in 
random forest models, especially for high biomass data, 
suggests it is not reliable for use for AGB measurement 
(except for BAM). Generally, parametric models showed 
stronger robustness than non-parametric models.

The RMSE of regression models (Table 4) showed 
that multivariate regression considerably increased the 
accuracy in all forest types. The RMSE was around  
70 tons ha-1 for the total sample approach. For the RF, 
the RMSE improved up to 62.40 tons ha-1 and up to 
10-13 tons ha-1 in random forest models for the MF, 
PF, and ReF. Generally, with observations in particular 
forest types, the enhancement of RMSE in AGB 
measurement rose by 9-18% for RF, and 80-85% for the 
remaining forest types.

The boxplot graph in Fig. 4 illustrates the variation 
of RMSE in 10-fold cross-validation using different 
models with the total sample and five forest types. The 
RMSE showed a considerable variation in all models 
for the RF with the range of 33.52-115.68 tons ha-1. 

A similar pattern was also noticed in the linear model 
for BAM. The highest variance was in the polynomial 
model for BAM of between 43.34-4016.66 tons ha-1, but 
we could not illustrate this in this figure. Conversely, 
a low variance of RMSE was shown for the remaining 
forest types.

In conclusion, following the analysis of R2 and 
RMSE, different models were suitable for different 
forest types to measure AGB. The random forest models 
could be chosen to estimate AGB for BAM forest 
because they obtained the best R2 and RMSE with the 
value of 0.85 and 23.18 tons ha-1, respectively. For the 
remaining forest types, random forest was not reliable 
for use based on the comparison between training  
and validation results. For the ReF, the polynomial 
model displayed good correlation between AGB and 
with PolSAR variables with R2 of 0.47 and RMSE 
improved up to 10.11 tons ha-1. The SVR should be 
selected for MF and PF with RMSE between 8.27 and 
12.38 tons ha-1. For the RF, the random forest exhibited 
a high correlation in training data with RMSE decrease 
to 31.62 tons ha-1. However, the overfitting, which 
occurred between training and validation, needs to be 
solved to ensure the reliability of the model. To solve 

Types Linear Polynomial SVM Random forest

Total 78.18/ 77.29 75.61/ 75.33 69.03/ 74.26 34.36/ 75.78

RF 63.79/ 64.18 62.53/ 68.24 64.39/ 61.28 31.62/ 62.40

MF 13.97/ 14.28 13.44/ 14.81 8.27/ 13.73 6.17/ 12.98

PF 17.13/ 17.50 13.57/ 14.06 12.38/ 14.58 7.04/ 15.24

ReF 9.911/ 10.38 10.11/ 15.76 10.43/ 10.40 5.03/ 10.14

BAM 44.04/ 84.25 41.09/2729.98 35.49/ 47.02 23.18/ 44.08

Fig. 4. Root mean squared error (RMSE) of regression models in tons/ha using 10-fold cross-validation for different forest types.

Table 4. Root mean squared error (RMSE) of regression models using training and 10-fold cross-validation for different forest types.



Combination of SAR Polarimetric... 3363

this problem, further study should be carried out only 
focusing on RF. RF has a highly complex structure 
caused by the combination of the great diversity of 
species composition and many forest storeys. Because of 
a dense canopy, the L-band backscattering only reaches 
to the canopy and the higher storey, leading to poor 
correlation between backscattering signals and lower 
canopy structure. Although the P-band radar or Lidar 
signals data are supposed to solve this limitation of 
L-band, they currently are not available for application 
in large areas because of the cost and accessibility of 
the data source. It is recommended that we divide the 
RF following vertical stratification and observe the 
sensitivity of backscattering to the various storeys. This 
requires an increase in data samples for the RF, which 
was beyond the scope of this study.

Conclusions

In this study, we determined the models of AGB 
measurement in different forest types based on 
correlation with PolSAR parameters extracted by 
L-band in the PALSAR-2 image. Significant variables 
were selected for each forest type to improve biomass 
estimation accuracy. Regression models included linear, 
polynomial, SVR and random forest. The data were 
analyzed in two ways, including the total sample data 
and data for different forest types. We also analyzed the 
correlation of biomass to individual PolSAR signals in 
specific forest types with in situ biomass to find the best 
model for each forest type.

Forests were categorized into five different types. 
Based on natural forest species, it was divided into 
broad-leaved forest and bamboo forest (mix of broad-
leaved species and bamboo species). Based on volume 
levels, the broad-leaved forest was divided into rich, 
medium, poor, and restoration. In-situ AGB values were 
up to 500 tons ha-1. To improve the accuracy of the 
biomass estimation, we divided the data and assessed 
the correlation using the multivariate equations in 
different forest types. 

The correlation analysis of individual PolSAR 
parameters to forest biomass revealed different 
sensitivities in different forest types. Therefore, the 
different sets of parameters were proposed for use for 
particular forest types. The result also indicated that 
the volume scattering composition (Y_vol) and the 
coherency elements mainly contributed to the AGB 
estimation function. 

There was a significant improvement in the 
correlation coefficients of the model. The RMSE 
values were enhanced by 9-18% for the rich forest, and  
80-85% for the remaining forest types when compared 
to the total sample. Among all models, SVR and 
random forest regression exhibited better performance 
in R2 and RMSE in training data. SVR provided the 
best result for MF and PF with RMSE 8.27 tons ha-1 
and 12.38 tons ha-1, respectively. Although random 

forest displayed a good R2, it was only chosen to 
calculate AGB for BAM because it had low reliability 
with the problem of underfitting with high values in 
both training and validation data for the remaining 
forest types. The polynomial function proved to be a 
suitable model for estimating biomass for the ReF with 
R2 of 0.47 and RMSE of 10.11 tons ha-1. In this study, 
the low correlation of AGB with PolSAR parameters 
in the RF type was because of the reduction of radar 
signals in high biomass areas. The noise in the ground 
data caused by heterogeneous samples also affected the 
correlation results. The method has been mentioned by 
observing the sensitivity of backscattering to various 
storeys following vertical stratification.

In general, the results showed that multivariate 
analysis combined with the selection of significant 
variables provided a satisfactory result in biomass 
estimation in different forest types (except RF). This 
study also confirmed the effectiveness and role of 
PolSAR data in calculating above-ground biomass in 
tropical forests. Furthermore, the strong correlation of 
PolSAR signals to the bamboo forest was exhibited in 
this study. This verified its potential for estimating AGB 
in bamboo biomass using SAR data, which was not 
documented in previous studies, as well as creating a 
foundation for further study in various bamboo species.
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